359章 魏院长笑吟吟的话语一出,程诺的神色不由变了变。 一篇论证逻辑错误的论文? 让自己在半小时之内找到其中存在的数学语言逻辑错误? 程诺皱着眉头思考,思考魏院长出的这个考验的难度。 不过,在没有通读整篇论文之前,他很难给出一个准确的定论。 究竟能不能完成,即便自信如他,都要打一个大大的问号! 但,此刻,他没有“拒绝”这个选项! 面对着魏院长笑意盎然的面庞,程诺重重点头,“好,可以。” 魏院长眯眯眼,指着答辩教室后排的一个座位,“你先在那答题吧,我们继续面试其他答辩的学生。” 半个小时的时间,四个老师当然不可能在这干坐着等程诺作答完毕。 正好趁着这段时间,可以面试完一两位答辩毕业生。 魏院长倒也不担心程诺会借助手机在网上搜索资料。 这篇论文本就由他本人撰写,由于是费稿,根本没有再任何平台上发表过。 至于该论文中存在的那处逻辑错误,就更不可能通过非正常手段得知。 一切,都只能靠程诺自己。 这也算是对程诺数学水平的究极考验。 虽然说即便最后程诺没有成功完成作答,魏院长也不肯能不发给程诺毕业证,但是,程诺在他心中的分量绝对会大打折扣。 关于后续科研资源分配上,也会进行重新调整。 程诺拿着魏院长那篇厚厚的论文,来到答辩教室后排的一个座位上。 座位的抽屉洞里,有一摞的草稿纸和碳素笔之类的各种文具。 看来这是魏院长早有预谋啊! 程诺苦笑一下,这个套无论自己之前知不知道,都只能无奈的往里面跳啊! 论文总共34页,比程诺上交的论文少上几页。 论文题目和论文证题也和程诺一模一样,都是证明Bertrand假设。 唯一区别的,是程诺所述的证明方法为一种正确合理可行的证明方案。 而魏院长的,则是一种错误的证明方案。 哈哈哈! 这样想的话,确实是好受多了! 程诺心头那被魏院长算计的阴霾一扫而空。 他活动活动手指,揉了揉之前一直维持微笑导致有些发僵的脸蛋,低下头,开始浏览起魏院长的论文。 聚精会神的他,一点点将论文中的内容嚼碎。 就连前面四位老师和答辩毕业生交流,他都没有察觉。 虽然魏院长的此篇论文和程诺的毕业论文选择的证题相同,但具体的证明步骤却是千差万别。 程诺和上世纪伟大的数学家切尔雪夫在证明Bertrand假设时,都是采用引理代入推导的方法。 但在魏院长的这篇论文中,他却另辟蹊径,采取了一种截然不同的证明思路。 Euler乘积公式引入法! 程诺暂且用这么名字命名。 在论文中,魏院长从证明过程的一开始,就引入Euler乘积公式这个概念,随后通过Euler乘积公式和Bertrand假设的数学逻辑关系,进行命题推导。 何谓Euler乘积公式? 这是数学家日耳曼提出的关于复数分布的起点之一,具体内容为:对任意复数s,若Re(s)>1,则:Σnn-s=Πp(1-p-s)-1。 这是一个相当冷门的数学公式,在现在数学学术研究中几乎很难用到。 没想到,魏院长会突发奇想,用它作为证明Bertrand假设的另一切入点,果然不愧为曾经的华国数学界的大牛。只不过,结果似乎并不完美。 用了十多分钟的时间,程诺看完了整篇论文。 当然,这指的不是程诺读完了文件那完整34页的内容。 和程诺提交的毕业论文一样,真正算是真材实料的,只有那五六页的内容罢了。 读完之后,程诺对魏院长的证明思路也算是了解。 首先,他设f(n)为满足f(n1)f(n2)=f(n1n2),且Σn|f(n)|<∞的函数(n1、n2均为自然数),则可顺利推导出:Σnf(n)=Πp[1 f(p) f(p2) f(p3) ...]。 得出上面那一串的推导定理后,算是完成了证明的第一步。 下面,由于Σn|f(n)|<∞,因此1 f(p) f(p2) f(p3) ...绝对收敛。考虑连乘积中p
第三步,由于1 f(p) f(p2) f(p3) ...=1 f(p) f(p)2 f(p)3 ...=[1-f(p)]-1…… 第四步,…… ………… 最后一步,由(2n)!/(n!n!)=Πp≤2n/3ps(p)。将连乘分解为p≤√2n及√2n 一步接一步,逻辑严密。 思路清奇,但似乎却在常理之中。 读完第一遍,程诺并未找出论文中存在的任何瑕疵。 程诺眉头轻皱一下。 果然,事情没有那么简单。 程诺没有时间再去通读检查一遍,他先是排除了论文中逻辑推导简单的部分,直接忽略不看。 如果那个逻辑错误真的出现在那种低级的逻辑推导步骤上,魏院长根本不可能还将其当做程诺的论文答辩题目。 因为,那样太丢人。 论文中存在庞大运算量和缜密推导步骤的地方一共五处。 程诺逐一排查。 “第一处,Euler乘积公式右端求和和普通有限积的推理,首先,将等式右端所有含有因子2的f(n)项都消去,然后……” “第二处,素数的分布以及二步精确,……” ………… “第四处,f(n)的性质的代入,f(2)Σnf(n)=f(2) f(4) f(6) ...” 忽然,看到这一部分内容的程诺,目光陡然一凝。 他盯着一行公式,左瞧瞧,右瞅瞅,然后嘴角浮现一抹淡淡的笑容。 我,找找到你了! 程诺拿起碳素笔,在草稿纸上写写画画一阵后,随后重重的在论文的那行公式下划了一条横线。 横线上的公式:Πp[1-f(p)]Σnf(n)=f(1)=1,(2n)!/(n!n!)=Πp≤√2nps(p),Σnf(n)=Πp[1-f(p)]-1 就是这里,没错了。 第三个公式和前两个公式只见的逻辑关系,存在一种习惯性的错误。 这三个公式,也算是整篇论文证明过程中几个核心公式之一,也因此,公式的错误,导致整篇论文成为一篇费稿。 程诺此时的心情无比好。 因为他不仅找到了魏院长要求的那处逻辑错误,并且,脑海里已经计算出合理纠正方案! 抬头一看,四位老师面前的答辩席上没人。 程诺拿起论文,昂首阔步的走上讲台。 然后,在四位老师微微错愕的目光中,淡淡一笑,“老师,我已经搞定了!”